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Abstract

We develop a simple predictive environmental quality criteria (EQC) model for the survival and growth of farmed

abalone Haliotis diversicolor supertexta exposed to waterborne zinc (Zn) based on a probabilistic internal effect

concentration (IEC)-based modeling framework. We couple a first-order two-compartment bioaccumulation model and a

reconstructed dose–response profile based on a three-parameter Hill equation model associated with a field bioaccumulation

study to form a probabilistic model to determine acute and chronic EQC. The acute EQC (a-EQC) is predicted from IECs

and a field-derived bioaccumulation factors, whereas a statistical procedure with an acute-to-chronic value is used to derive

chronic EQC (c-EQC) based on bioaccumulation. Field bioaccumulation study demonstrates a linear relationship between

water and tissue Zn concentrations in abalone and algae. Our model, designed for simplicity and theoretical insight, yields

explicit mathematical results through a probabilistic analysis to capture EQC modeling methodology in a more realistic

way by analyzing computationally through Monte Carlo simulations. Here we show that the median a-EQC ranges from

0.34–0.39 Ag ml�1, whereas the median c-EQC is 0.04–0.05 Ag ml�1 for selected abalone farms. We believe that this

probabilistic EQC modeling framework is an effective method for conceptualizing a public policy decision vis-à-vis

establishing a site-specific acceptable acute and chronic EQC for better management and restoration of the rapidly

degrading aquacultural ecosystems.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Abalone; Site-specific environmental quality criteria; Probabilistic; Risk; Toxicity; Zinc
0044-8486/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.aquaculture.2005.02.044

T Corresponding author. Tel.: +886 2 2363 4512; fax: +886 2

2362 6433.

E-mail address: cmliao@ntu.edu.tw (C.-M. Liao).
1. Introduction

Richardson (2001) and Wang and Ke (2002) have

shown that zinc (Zn) was found in high level (50–

120 g g�1 dry wt) in the tissues of gastropods. Lin

and Liao (1999) and Liao et al. (2002a) indicated

that Zn has been detected in many abalone farms.
2005) 159–173
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The average Zn concentrations in aquaculture waters

are reported to range from 60 to 130 ng ml�1 in

different areas of Taiwan. Abalone Haliotis diversi-

color supertexta is commercially important for

aquaculture in Taiwan. H. diversicolor supertexta is

appreciated for their delicacy and high market value.

Aquaculture of H. diversicolor supertexta is there-

fore a promising business (http://www.fa.gov.tw,

2003). However, the coastal regions of Taiwan

where the abalone farms are situated are subjected

to polluted discharges from rivers. Conroy et al.

(1996) and Knauer et al. (1997) indicated that if Zn

levels are elevated, toxicity can occur and can have

severe effects on the health of abalone, which will

reduce market prices and cause closure of abalone

farms. The mechanisms of Zn toxicity involved in

the threatening of survival and the inhibition of

growth to abalone remain unknown.

US EPA (1995) indicated that environmental

quality criteria (EQC) play a pivotal role in protect-

ing ecosystems from undesirable effects of chemicals

as it is an essential part of both source- and effects-

oriented management for chemical substances. Jans-

sen et al. (2000) and Bergman and Dorward-King

(1997) pointed out that neither total nor dissolved

aqueous metal concentrations are good predictors of

metal bioavailability and toxicity and are inadequate

to accurately assess the potential impact of metals on

the ecological quality of ecosystems. Rather than

develop a single-value waterborne metal concentra-

tion for establishing the water quality criteria, it is

better to derive a predictive EQC model that

explicitly incorporates the factors controlling bio-

availability and bioaccumulation in the aquacultural

ecosystems.

In the present work, we develop a systematic and

quantitative dose-based framework that takes account

of the site-specific water quality characteristics to

derive the EQC for the survival and growth of

farmed abalone. A major complication in deriving

EQC for aquacultural species is the high degree of

uncertainty resulting from the lack of dose–response

information and the large environmental variability

in exposures among individuals (Liao et al., 2003;

Liao and Ling, 2004). A better approach would be to

explicitly model the uncertainties inherent in the

toxicity threshold model for aquatic species in that

the output would be a distribution of possible
toxicity criteria for the survival and growth of

abalone from which the level of conservatism can

be predicted, e.g., we can choose an appropriate risk

criteria value based on a 10% probability of exceed-

ence the effect concentration affecting 10% (IEC10)

of sensitive aquatic species as suggested by US EPA

(1995).

Suggestions have been made that the IEC5 would

be more protective of ecosystem structure and

function than IEC10 or IEC50 (Van der Hoeven et

al., 1997; Moore and Caux, 1997). Versteeg et al.

(1999) and Van der Brink et al. (2002) also suggested

that the selection of a hazard external effect concen-

tration (EEC) protecting 95% of the single-specific

sensitivity distribution (i.e., EEC5) appears to provide

an appropriate level of protection when compared to

multispecies tests or field studies. One reason is that

if concentrations of this compound are below the

EEC5, more than 95% of the biological species set

considered will not display effects as determined by

the chronic toxicity tests. Because H. diversicolor

supertexta are commercially important and have high

market prices in Taiwan aquaculture, we choose IEC5

and EEC5 as the threshold of Zn toxicity for survival

and growth endpoints to derive acute and chronic

EQC, respectively.

Because chronic tests are more lengthy and the

endpoints are somewhat subjective, it is not surpris-

ing that more often chronic and standards are based

on the acute-to-chronic ratio (ACR) (US EPA, 1985;

Ford, 2001). The ACR is an acute toxicity values

measured to its chronic toxicity values, measured

under the same experimental conditions. The ACRs

are derived on a species-by-species basis, ideally

with both the acute and chronic toxicity data

developed from the same test. The ACR values are

typically greater than one, reflecting the fact that

chronic toxicity typically occurs at lower levels than

dose acute toxicity. Species mean ACRs ranged from

1.48 in saltwater for the sheepshead minnow

(Hughes et al., 1989) to 171.2 in freshwater for the

snail Campeloma decisum (Arthur and Leonard,

1970). US EPA (1985) suggested that the ACR

approach can be served as the basis of the chronic

criteria in that the ACR is the geometric mean of the

ratio of acute to chronic values.

Our purpose is to present a probabilistic IEC-based

approach to derive a predictive site-specific EQC for

http://www.fa.gov.tw
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the survival and growth of farmed abalone exposed to

waterborne Zn. We demonstrate its utility by applying

it to real abalone farms using the methodology for

water quality criteria derivation developed by US EPA

(1995) and Traas et al. (2004). The methodology

adopted herein is an analysis tool that couples

probabilistic submodels of the bioaccumulation proc-

ess and the dose–response relationship to arrive at a

probabilistic EQC model to determine a suitable Zn

toxicity threshold for risk managers who prefer the

risk threshold to have a higher or lower level of

protection.
2. Materials and methods

The dose-based probabilistic site-specific EQC

modeling framework is divided into four phases

(Fig. 1) and is described in the subsequent

sections.

2.1. Development of a EQC model to relate EQC,

IEC5, and EEC5

The acute EQC (a-EQC, Ag ml�1) model for the

survival protection of farmed abalone exposed to Zn

can be expressed as (Traas et al., 2004),

a� EQC ¼ IEC5

BAFm
; ð1Þ

where IEC5 is based on mortality as an endpoint

where 5% of the abalone individuals died (Ag g�1 dry

wt), and BAFm is the bioaccumulation factor of

abalone (ml g�1). We treat IEC5 and BAFm in Eq.

(1) probabilistically.

The chronic EQC (c-EQC, Ag ml�1) (Traas et al.,

2004) for the growth protection of farmed abalone

can be expressed by introducing the CBR theory

(Verhaar et al., 1999; Legierse et al., 1999) that

assumes that the effect occurs when the total body

burden of an organism reaches a certain threshold

level, to relate EEC5 and IEC5 of IEC5=EEC5�
BCFm as,

c� EQC ¼ EEC5

ACR
¼ IEC5

BCFmACR
; ð2aÞ
where EEC5 is based on growth as an endpoint

where 5% of abalone individuals growth inhibited

(Ag ml�1), and BCFm is the bioconcentration factor

of abalone (ml g�1). ACR is the acute-to-chronic

value in that chronic value is usually expressed as a

geometric mean of no-observed effect concentration

(NOEC, Ag ml�1) and lowest-observed effect con-

centration (LOEC, Ag ml�1), and has a form as (Tsai

et al., 2004),

ACR ¼ LC50=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NOEC� LOEC

p
: ð2bÞ

To quantify the influence of uncertainty in EEC5

and ACR on c-EQC, we treat IEC5, BCFm, and ACR

in Eq. (2) probabilistically.

2.2. Derivation of BAFm

Zinc is accumulated in abalone both by dietary

(i.e., red algae Gracilaria tenuistipitata var. liui, the

major forage for culturing H. diversicolor supertexta)

and nondietary (i.e., water source) routes. If the

dissolved Zn concentration in water is assumed to be

constant, whereas the Zn concentration in algae is

assumed to vary with time, the temporal change of

Zn concentration in abalone could be modeled using

a first-order two-compartment bioaccumulation

model as,

dCm tð Þ
dt

¼ af Ca tð Þ þ k1Cw � k2 þ k2f þ gð ÞCm tð Þ;

ð3Þ

dCa tð Þ
dt

¼ k1aCw � k2a þ af þ gað ÞCa tð Þ; ð4Þ

where Cm(t) is the time-dependent Zn concentration

in abalone at time t in day (Ag g�1 dry wt), Cw is

the dissolved Zn concentration in water (ng ml�1),

Ca(t) is the time-dependent Zn concentration in

algae at time t in day (Ag g�1 dry wt), a is the

assimilation efficiency of abalone (%), f is the

abalone grazing rate (g g�1 d�1), k1 is the abalone

uptake rate of Zn (ml g�1 d�1), k2 is the abalone

depuration rate (d�1), k2f is the elimination rate
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Fig. 1. A conceptual algorithm describing the dose-based probabilistic environmental quality criteria (EQC) modeling framework for survival

and growth of farmed abalone exposed to waterborne Zn.
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constant for Zn from food in abalone (d�1), g is the

abalone growth rate (d�1), k2a is the algae

depuration rate of Zn (d�1), k1a is the algae uptake
rate of Zn (ml g�1 d�1), and ga is the algae growth

rate (d�1). Assuming that the initial Zn concen-

tration is equal to zero in algae and consider the
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steady-state condition in Eq. (4) and solve for Ca

gives,

Ca ¼ BCFaCw; ð5Þ

where BCFa=k1a / (k2a+af+ga) is the bioconcentra-

tion factor of G. tenuistipitata var. liui for Zn (ml

g�1). We solve Eq. (3) by substituting Eq. (5) into

Eq. (3) and obtain,

Cm tð Þ ¼ Cm t ¼ 0ð Þe�Ket þ Ku

Ke

Cw 1� e�Ket
� �

; ð6Þ

where Ku and Ke represent the overall uptake and

overall elimination rate constants, respectively, and

have the form as,

Ku ¼ k1 þ af BCFa; ð7Þ

Ke ¼ k2 þ k2f þ g: ð8Þ

The Zn concentration in abalone is calculated as

Cm= (Ku /Ke)Cw=BAFmCw when equilibrium is

achieved in Eq. (6) in that we define the bioaccumu-

lation factor of abalone as BAFm=Ku/Ke and has the

form as,

BAFm ¼ BCFm

1þ k2f þ gð Þk�1
2

þ BMFmBCFa; ð9Þ

where BCFm is the bioconcentration factor of abalone

(ml g�1) and BMFm=ga/Ke is the biomagnification

factor of abalone (g g�1). BCFa, BCFm, and BMFm in

Eq. (9) can be derived from a field bioaccumulation

study.

Eq. (3) describes the gain and loss of Zn

accumulation in abalone featuring constant biokinetic

and physiological rates and a constant water concen-

tration. The major processes in Eqs. (3) and (4)

include (i) the exchange of Zn between abalone and

dissolved Zn was modeled as a first-order process

with additional Zn accumulation from ingested algae,

(ii) abalone ingests only algae and neglects other

suspended particles, bacteria, and detritus uptakes,

(iii) tissue concentration of Zn per unit biomass of

abalone increases as a result of direct uptake from

water and through assimilation of algae, and (iv)

tissue concentration tends to decrease as a result of

elimination from the whole body and growth dilution.
2.2.1. Field bioaccumulation study

We conducted a field bioaccumulation study to

determine BCFa, BCFm, and BMFm based on the field

data obtained from real abalone farms. The most

important farming areas for the production of abalone

H. diversicolor supertexta are located at Toucheng,

Kouhu, and Anping, respectively, on the north, west,

and south coastal areas of Taiwan region. All the

abalone farms use seawater from polluted coastal

areas. We selected 3 abalone farms for each location

mentioned above to collect the samples on the

abalone, the red algae G. Tenuistipitata var. liui, and

ambient water. Three abalone, three algae, and three

500 ml water samples per farm were collected. The

abalone and algal samples initially were washed in

seawater to remove epiphytes and kept at 4 8C during

transfer to the lab at Ecotoxicological Modeling

Center. The water samples were fixed by adding 5

ml 1N HNO3. The algae and shucked abalone were

freeze-dried overnight and then ground into a fine

powder in a grinder (Tai-Hsiang S36-89). 500 mg

portions of the ground samples were digested in 10 ml

concentrated HNO3 (65 wt.%) overnight at room

temperature.

A Perkin-Elmer Model 5100PC atomic absorption

spectrometer (Shelton, CT, USA) equipped with an

HGA-300 graphite furnace atomizer was used to

analyze Zn. The detection limit is 5 Ag Zn l�1 water

and 0.5 Ag Zn g�1 tissue. External quality control was

achieved by digesting and analyzing identical

amounts of dehydrated (90% water) standard refer-

ence materials (DORM-2 Dogfish Liver-2-oganic

matrix, provided by the NRC-CNRC, National

Research Council of Canada). Recovery rates ranged

from 95–97%. We employed StatisticaR software

(StatSoft, Tulsa, OK, USA) to perform regression

analysis and statistical analysis (analysis of variance

and Student t test). Statistical significance was judged

by p b0.05.

2.3. Derivation of IEC5

We employ an empirical three-parameter Hill

equation model to fit mortality responses in relation

to Zn whole-body burden in abalone based on

published acute toxicity data and the previously

established relationship between Zn tissue residues

and mortality effects in abalone by Liao et al.
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(2002a,b). In fitting the Hill equation model to the

observed mortality for specific-interval acute toxicity

data, the dose–response profile can be expressed as

(Liao et al., 2002a,b),

M ¼ 100� C3:70
w

24� h LC50ð Þ3:70 þ C3:70
w

; ð10Þ

where M is the mortality (%), 24-h LC50 is the 24-h

median lethal concentration (mg l�1), and the

exponent 3.70 is an average value of the fitted Hill

coefficient, indicating the number of ligand molecules

that are required to bind to the receptor in order to

produce a functional effect (Weiss, 1997). Here the

averaged Hill coefficient larger than one indicates

positive cooperativity.

We appropriately transform Eq. (10) to an IEC-

based dose–response relationship using the Hill model

framework to predict the response as (Liao et al.,

2002a,b),

M ¼ 100� C3:70
m

IEC50ð Þ3:70 þ C3:70
m

¼ 100� C3:70
m

BCFmLC50 lð Þð Þ3:70 þ C3:70
m

; ð11Þ

where IEC50 based on the site of action that cause 50%

mortality of abalone individuals (Ag g�1 dry wt) and

LC50(l) is the incipient value of LC50 (mg l�1). We

treated BCFm and LC50(l) in Eq. (11) probabilisti-

cally. Applying the Hill equation model, the cumu-

lative distribution function (cdf) of predicted mortality

function for a given tissue Zn concentration, F(M|C),

could be expressed symbolically as a conditional cdf,

F M jCð Þ ¼ U
100� C3:70

BCFmLC50 lð Þð Þ3:70 þ C3:70

 !
;

ð12Þ

where C is the given Zn concentration in abalone (Ag
g�1 dry wt) and U(!) is the cumulative standard

normal distribution. We use Eq. (12) to estimate the

distribution of IEC5.

2.4. Uncertainty analysis

2.4.1. Model parameterization

Current literature is reviewed to develop probability

distributions for the random variables appearing in the
bioaccumulation model and the dose–response model

adopted. Source data of input variables in EQC

modeling would be obtained from published studies

by Chen (1984, 1989), Lee et al. (1996), Lin and Liao

(1999), Chen and Lee (1999) and Liao et al. (2002a,b),

and Liao et al. (2003). Data were sorted by reported

statistical measure, e.g., mean, standard deviation,

standard error, etc. There are multiple sources of

variability and uncertainty to be considered during

distribution development for model input variables

from measured values. Therefore, data are log-trans-

formed when necessary to meet the assumptions of

statistical normality. We use the StatisticaR software

package to analyze data and distribution parameters.

We use the chi-square (v2) and the Kolmogorov–

Smirnov (K–S) statistics to optimize the goodness-of-

fit of distributions. The implemented parameter prob-

ability distributions are summarized in Table 1 and will

be described in the subsequent sections.

2.4.1.1. Biokinetic parameters: k2, k2f, g, BCFa,

BMFm, BCFm. Distributions are fitted to polled lab-

derived data of k2 and k2f obtained from different

sources and the selected lognormal distributions have

the acceptable v2 and K–S fits in that optimizations

using either statistics yield geometric mean (gm) and

geometric standard deviation (gsd) (Table 1). The

field-derived parameters (BCFa, BMFm, BCFm) could

be obtained by performing a linear regression analysis

to derive the relationships among algae Zn concen-

tration (Ca, Ag g�1 dry wt), abalone Zn concentration

(Cm, Ag g�1 dry wt), and waterborne Zn concen-

tration (Cw, Ag ml�1) based on the field bioaccumu-

lation study followed the definitions of BCFa=Ca /

Cw, BCFm=Cm/Cw, and BMFm=Ca /Cm in that Cw is

treated probabilistically.

2.4.1.2. Geochemical parameter: Cw. Distributions

of water Zn levels in abalone farm (Cw) are fitted to

the polled field observations obtained from three

designated abalone farms and the selected lognormal

distributions have the optimal K–S and v2 goodness-
of-fit (Table 1).

2.4.1.3. Dose–response parameter: LC50(l). In

applying dose–response relationships derived from

experimental study, we must consider the limitations

of the data and account for the inherent uncertainty



Table 1

Input parameters for probabilistic EQC modeling framework

Parameters Uncertainty/variability Distribution

Biokinetic parameters

BCFm (Ag ml�1) U

Toucheng LN(738.68, 1.05)a

Kouhu LN(927.77, 1.20)

Anping LN(913.70, 1.21)

BCFa (Ag ml�1) U

Toucheng LN(609.48, 1.05)

Kouhu LN(420.90, 1.40)

Anping LN(439.96, 1.38)

BMFm (Ag ml�1) U

Toucheng LN(1.15, 1.14)

Kouhu LN(2.36, 2.04)

Anping LN(2.17, 1.97)

Lab-derived parameters

k2 (d
�1) U LN(0.390, 4.746)

k2f (d
�1) U LN(0.602, 1.530)

c-EQC model parameter

ACR U LN(13.57, 1.14)

Geochemical parameters

Cw (Ag ml�1) U

Toucheng LN(0.127, 1.310)

Kouhu LN (0.055, 1.700)

Anping LN (0.059, 1.770)

Dose–response parameters

LC50(l) (mg l�1) U N(1.2, 0.158)b

a Lognormal distribution with a geometric mean and a geometric

standard deviation.
b Normal distribution with a mean and a standard deviation.
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that arises from a number of sources, including the

limited number of observations and limited sample

size within treatment sets. To account this uncertainty,

we construct distributions for the input variables of

BCFm and LC50(l) of Hill dose–response function

in Eq. (11). We determine a normal distributions to

LC50(l) (Table 1), and incorporate the distributions

into the Monte Carlo simulation to obtain 2.5th- and

97.5th-percentiles as the 95% confidence interval (CI)

for reconstructed dose–response profile. Uncertainty

and/or variability are not considered for the reported

Hill coefficient since the Hill coefficient from the

published study is reported only as an average value.

2.4.1.4. ACR. In order to derive the ACR value as

defined in Eq. (2b), we adopted the acute toxicity

value from Liao and Lin (2001) from which the acute
endpoint was described by 72-h LC50 with a value of

1.2F0.158 (meanFS.D.). The chronic toxicity value

is estimated to be 0.088 that is calculated from the

geometric mean of NOEC and LOEC values obtained

from Tsai et al. (2004). Then, the ACR value can be

calculated by Eq. (2b) in that we consider 72-h LC50

value as a normal distribution as N(1.2, 0.158),

resulting in the ACR=N(13.69, 1.8) by 5000 iter-

ations of Monte Carlo simulation. We appropriately

log-transformed the ACR value to a lognormal

distribution with a geometric mean of 13.57 and a

geometric standard deviation of 1.14 (Table 1).

2.4.2. Monte Carlo analysis

Uncertainty arises from estimation of both exposure

and effects. In order to quantify this uncertainty and its

impact on the estimation of expected risk, we imple-

ment a Monte Carlo simulation that includes input

distributions for the parameters of the derived dose–

response function as well as for estimated exposure

parameters. To test the convergence and the stability of

the numerical output, we perform independent runs at

1000, 4000, and 5000 iterations with each parameter

sampled independently from the appropriate distribu-

tion at the start of each replicate. Largely because of

limitations in the data used to derive model parameters,

inputs were assumed to be independently. The result

shows that 5000 iterations are sufficient to ensure the

stability of results. Sensitivity analysis identifies the

most significant parameters that are included in the

uncertainty and variability analysis. The sensitivity of

each variable relative to one another is assessed by

calculating rank correlation coefficients between each

input and output during simulations and then estimat-

ing each input contribution to the output variance by

squaring the output variance and normalizing to 100%.

The Monte Carlo simulation is implemented using

Crystal BallR software (Version 2000.2, Decisioneer-

ing, Colorado, USA).
3. Results

3.1. Field-derived bioaccumulation factors

The correlations of Zn concentrations in abalone,

algae, and water are significant (Fig. 2) in that

variances of Zn concentrations in abalone, algae,
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Fig. 2. Results of the field accumulation study showing Zn levels in (A) H. diversicolor supertexta and in (B) G. tenuistipitata var. liui as a

function of Zn concentration in water as well as (C) Zn levels in abalone as a function of Zn levels in algae G. tenuistipitata var. liui.
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and water were tested for homogeneity using F-test

and values of Zn concentration were than compared

using the appropriate t test. Fig. 2 also demonstrates

that Zn levels in abalone and algae increased with that

in water, whereas Zn level in abalone increased also

with that in algae. Eq. (6) reveals that Zn level in

abalone (Cm) is a linear function of water Zn content

(Cw) with all other parameters being constant within a

given experiment. Consequently, a straight line can

describe the model fits for each of the experimental
units analyzed in this study (Fig. 2). The resulting

regression equations for BCFa, BCFm, and BMFm can

be determined from Fig. 2 as: BCFa=0.715�12.84�
Cw

�1; BCFm=0.61 + 16.20�Cw
�1; and BMFm=

0.683+35.30(0.72�Cw�12.84)�1. Table 1 gives

the lognormal distributions of site-specific BCFa,

BCFm, and BMFm. Fig. 3 shows the probability

density function (pdf) of the site-specific BAFm
subject to the given site-specific pdfs of water Zn

level for three selected abalone farms. The field
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bioaccumulation study also demonstrates an inverse

relationship between waterborne exposure concentra-

tion and corresponding bioaccumulation factor that is

frequently observed for metals (Adams et al., 2000;

McGeer et al., 2003).

3.2. Site-specific IEC5 for Zn intrinsic toxicity

The Hill equation model and a 5000 iteration of

Monte Carlo simulation provided an adequate fit to the

data (v2 goodness-of-fit, PN0.5) (Fig. 4A–C). In the

present work, we employ the more restricted regulatory

endpoint IEC5 as a surrogate threshold in probabilistic

EQC modeling. We appropriately log-transformed the

site-specific IEC5 values for three designated abalone

farms and results in lognormal distributions of Toucheng:

LN(387.58 Ag g�1 dry wt, 1.15), Kouhu: LN(493.98 Ag
g�1 dry wt, 1.23), and Anping: LN(486.82Ag g�1 dry

wt, 1.26) in that LN(gm, gsd) denotes lognormal
distribution with a geometric mean (gm) and a geometric

standard deviation (gsd) (Fig. 4D–F).

3.3. Environmental quality criteria

The site-specific a-EQC is determined as the quo-

tients of the IEC5 and BAF of abalone (Eq. (1)) for three

selected abalone farms (Fig. 5A), whereas the site-

specific c-EQC values are calculated from the quotient

of CBR-based IEC5 and BCF of abalone linked with

an acute to chronic effect (Eq. (2a)) (Fig. 5B). The

median a-EQC are 0.39, 0.34, and 0.36 Ag ml�1,

respectively, for Toucheng, Kouhu, and Anping. The

site-specific median a-EQC values generally are lower

than the 96-h LC50 value of 1.1 Ag ml�1 with 95%

CI: 0.83–1.59 Ag ml�1 (Liao et al., 2002b) yet fall

within the uncertainty of the a-EQC of abalone farms

of Kouhu and Anping (Fig. 5A). The median site-

specific c-EQC values for Toucheng, Kouhu, and
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Anping farms are 0.05, 0.04, and 0.04 Ag ml�1,

respectively (Fig. 5B), that are a little bit lower than

the NOEC value of 0.0625 Ag ml�1 (Tsai et al., 2004).

The 97.5th-percentiles value of c-EQC for three

abalone farms is 0.07 Ag ml�1 which is a little bit

higher than the chronic value of 0.088 Ag ml�1 (Tsai

et al., 2004).

The results of the sensitivity analyses on proba-

bilistic EQC models are shown in the form of tornado

plots illustrating the Spearman rank order correlation

coefficients (Fig. 6). Sensitivity analyses reveal that

model-derived site-specific a-EQC values are most

sensitive to depuration rate constant k2 (�73.3%) and

IEC5 (48.6%) in Toucheng farm, whereas to abalone

biomagnification factor (BMFm) (73.7–77.1%) and

IEC5/bioconcentration factor of algae (BCFa) (36%)

in Kouhu and Anping farms (Fig. 6). The most

important factor in the site-specific c-EQC model is

the IEC5 (70%) for all three abalone farms (Fig. 6).
4. Discussion

4.1. Relationships between EEC and IEC

We traditionally employed the environmental con-

centrations as the surrogate for the target organ
concentrations to produce a given chemical effect to

aquatic animals, e.g., LC50, LOEC, and NOEC. LC50-

based tests determine the EEC, although the observed

effect depends on the intrinsic toxicity or biokinetic

behavior of the chemical in the aquatic animal. There-

fore, LC50-based parameters are mostly model-

dependent, yet the models usually employed such as

logit and probit have no biologically based assump-

tions that allow questions about the relevancy of such

models. The current procedures in bioassays consist of

observing lethality at fixed times, which can lead to the

determination of LC50 endpoints, rather than survival

curves. There is then a statistical dependence of LC50

data at consecutive times because they concern the

same organisms. It is more robust and powerful to use

the dose–time–response data than just the LC50 values.

Survival models also consider raw experimental data as

time to death versus concentration. They have an

intrinsically greater statistically power, yet any bio-

logical interpretation is limited.

Recently, concept of the body residue hypothesis

states that the use of environmental chemical concen-

trations to measure hazard could be misleading

because the environmental concentration necessary

to cause effect varies with the biouptake route,

duration of exposure, type of exposure medium, and

species used for testing (McCarty and Mackay, 1993).
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McCarty and Mackay (1993) and Sijm et al. (1993)

further indicated that the chemical dose required to

induce an effect at the target site in an organism

should not change significantly with routes of

exposure or duration, provided that the toxicity

mechanism does not change and the injury dose does

not accumulate over time. Thus, the use of dose-based

estimates of effect (i.e., IEC) has the potential to

eliminate variability due to changes in bioavailability,

routes of exposure, and feeding type.

Based on toxicological principles, the mechanisms

through which the dose at the target site elicits the
ultimate adverse response are described by pharma-

codynamic (PD) scheme and referred to as the action

of the effect dose at the target site. McCarty and

Mackay (1993) indicated that based on the receptor

theory, many PD concepts and principles have their

roots in a rather broad range of scientific endeavors.

Verhaar et al. (1999) and Legierse et al. (1999) have

developed a PD-based model to describe time-

dependent LC50 data, suggesting that PD-based

model could be applied to regulate the acute toxicity

and to estimate incipient LC50s and IECs of water-

borne chemicals in organisms.
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4.2. Significance of EQC for risk assessment

In this work, a new method has developed to

estimate the toxicity threshold for aquacultural ani-

mals. The method involves determining the IEC5 of

the mortality endpoint from a reconstructed dose–

response model for farmed abalone and links to EEC5

by incorporating a CBR theory to determine a c-EQC

for growth inhibition endpoint. These IEC5 and EEC5

can be appropriately transformed to concentration

following the proposed predictive EQC equations at

which no effects should be observed for mortality/

growth inhibition endpoints. The distributions can

then be used as a surrogate for the NOEC or LOEC in

risk assessment techniques, such as hazard quotient

and probabilistic ecological risk assessment (Liao and

Ling, 2004). This new method of estimating toxicity

thresholds not only is more realistic than the use of

arbitrary uncertainty factors but also is more con-

servative than current probabilistic risk assessment

methods. In our analysis, we use a PD-based approach

to reconstruct a dose–response curve for farmed

abalone in order to estimate the IEC5 distribution.

Therefore, the IEC5 is considered attractive because

this parameter is a model-based value and the method

is well established. We believe this to be a substantial

improvement over reliance on a single NOEC or

LOEC for the development of aquacultural water

quality management. In our work, the use of a

probabilistic analysis allows us to precisely state the

level of protection that would be achieved. The

method is easily adaptable if risk managers and the

public desire more relaxed or stringent levels of

protection.

The use of field-derived data in risk assessment is

advantageous as it provides a more realistic estimate

of toxicity as normal degradation and partitioning of

toxicants can occur as compared to laboratory data,

which can result in an overestimation of adverse

impacts. By combining the field-derived parameters

of Zn water concentrations and algae bioconcentration

factor of Zn for establishing a predictive EQC models

and using an estimated site-specific IEC5 distribution

in the calculations of a-EQC and c-EQC, the risk

assessor can be more confident that the proposed

probabilistic model can become a first simple tool for

regulatory applications until future research further

verifies the model. We believe that the predictive EQC
models with explicit threshold effect perform well

than the hazard quotient model. The applications of

the proposed model to real abalone farms give greatest

support to a toxicity threshold relation among exceed-

ence of metal criteria, the results of ambient bioassay,

and aquacultural ecosystems. Furthermore, if a food

web structure can be modeled in an aquacultural

ecosystem based on established principles of bio-

accumulation, we can employ food web model to

calculate the corresponding concentration in water

and sediment. In this way, generic EQC can be

calculated for compounds for which we lack toxicity

data.

4.3. IECs in relation to mode of action

Since Zn is an important essential nutrient in

maintaining a wide variety of biological processes in

organism, the total Zn content of tissues in abalone

may not solely reflect to the toxic effect, mortality, of

the metal. Therefore, the amount of required Zn at the

target sites that causes mortality is expected to be

higher than those of nonessential elements, indicating

the idea of the LC50 value only gives the ambient

concentration that causes toxicity, whereas the IEC-

based approach gives more accurate and comparable

measure of the bioavailable concentration that actually

reaches the target site(s) within the organism and

causes toxic effect of mortality.

Recently, a Biotic Ligand Model (BLM) was

developed to generate site-specific ambient water

quality criteria for chronic Zn toxicity to juvenile

rainbow trout (Oncorhynchus mykiss) (De Schamphe-

laere and Janssen, 2004) and acute Zn toxicity to

Daphnia magna (Heijerick et al., 2002). The term

bbiotic ligandQ refers to a discrete receptor or site of

action on an organism where accumulation of metals

leads to acutely toxic effects (Niyogi and Wood,

2004). It has been suggested that the binding

tendencies of metals to ligands are conceptually

linked to metal binding of biomolecules and conse-

quent toxic effects (Niyogi and Wood, 2004). In spite

of the models used in this study being applicable for

metal toxicity prediction, nevertheless, to better assist

accurate risk assessment posed by metals in aqua-

cultural ecosystems, more studies and experimental

data are needed to validate the applications of those

models.



C.-M. Liao, B. Yun-Hua Chou / Aquaculture 249 (2005) 159–173172
Specifically, we have developed and characterized

a site-specific EQC modeling framework that derives

appropriate acute and chronic EQC for survival and

growth of farmed abalone exposed to waterborne Zn.

As predicted by simple mathematical models, the

IEC-based EQC can set a scientific standard in terms

of bioaccumulation factors and acute-to-chronic value

that is easily obtained for existed acute and chronic

bioassay data. This probabilistic site-specific EQC

modeling incorporating a mechanism involved in

transport and biouptake of Zn in aquacultural ecosys-

tems (e.g., BLM) allows us to account for receptor-

based toxicity in dealing other modes of action based

on different model concepts.
5. Conclusions

In this work, we use the IEC concept to develop

EQC in a more integrated and efficient process in that

we employ probabilistic methods to establish less

subjective order-of-magnitude uncertainty factors in

deriving EQC from limited empirical data. We also

use the uncertainty analysis to estimate concentration

that provides a specified level of protection (e.g.,

IEC5 and EEC5) for the high market prices aqua-

cultural species. The results of field biomonitoring or

field validation studies of proposed EQC should be

used as evidence on the appropriateness of the

proposed toxicity thresholds.

We believe that a probabilistic model-based frame-

work is an effective representation of state-of-the-art

results of scientific assessments for aquacultural

species exposed to waterborne contaminants and has

potential for use in EQC establishment. Despite great

uncertainty in many aspects of integrated assessment,

e.g., the problem of physical and chemical variables in

water such as temperature, pH, turbidity, oxygen

level, which may modify the water metal concen-

trations, cautious interpretation of observations

obtained from optimized-controlled laboratory can

substantially reduce the likelihood.

Although the suitability and effectiveness of

techniques for presenting uncertain results are con-

text-dependent, we believe that such probabilistic

methods are more valuable for communicating an

accurate view of current scientific knowledge to those

seeking information for decision-making than assess-
ments that do not attempt to present results in

probabilistic framework. We suggest that our proba-

bilistic EQC modeling framework and methods be

taken seriously because they produce general con-

clusions that are more robust than estimates made

with a limited set of scenarios or without probabilistic

presentations of outcomes, and our predictive EQC

modeling technique highlights a risk-based frame-

work in the future for better aquacultural ecosystem

management.
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